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Abstract

This paper demonstrates that fat-tailed distributions of trade volume and stock re-

turns emerge in a simultaneous-move herding model of rational traders who infer other

traders’ private information on the value of assets by observing aggregate actions.

Without parametric assumptions on the private information, I analytically show that

the traders’ aggregate actions follow a power-law distribution with exponential trun-

cation. Numerical simulations show that the model is able to generate the fat-tailed

distributions of returns as observed empirically. I argue that the learning among a

large number of traders leads to a criticality condition for the power-law clustering of

actions.
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1 Introduction

Since Mandelbrot [27] and Fama [14], it has been well established that the short-term

stock returns exhibit a fat-tailed, leptokurtic distribution. Jansen and de Vries [20],

for example, estimated the exponent of the power-law tail to be in the range 3 to 5,

which warrants a finite variance and yet deviates greatly from the normal distribution

in the fourth moment. This anomaly in the tail and kurtosis has been considered as a

reason for the excess volatility of stock returns.

Efforts to explain this anomaly have been ongoing for long. A traditional economic

explanation for the excess volatility of the volumes and returns relies on the traders’

rational herd behavior. In a situation where a trader’s private information on the

asset value is partially revealed by her transaction, the trader’s action can cause an

avalanche of similar actions by the other traders. This idea of a chain reaction through

the revelation of private information has been extensively studied in the literature of

herd behavior, informational cascade, and information aggregation. However, there

have been few attempts to explain the fat tail in this framework. This paper shows

that the chain reaction of information revelation leads to the fat-tail distributions of

the traders’ aggregate actions and asset returns.

I consider a model of a large number of informed traders who receive imperfect

private information on the true value of an asset. The traders simultaneously choose

whether to buy one unit of the asset or not to buy at all. I consider a rational ex-

pectations equilibrium in which each trader submits her demand schedule conditional

on price. The trader’s rational choice is based on her private information as well as

the information revealed by the other traders’ actions through the equilibrium price.

The price is set by an auctioneer who aggregates the informed traders’ demand and

matches the demand with the supply schedule submitted by uninformed traders. The
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equilibrium is a mapping from the space of private information of all traders to that of

the aggregate actions. The larger the aggregate buying action, the more is the traders’

subjective belief on the state of a high asset value, and the more likely each trader is to

buy the asset. Hence, the traders’ strategy exhibits complementarity, and their actions

are positively correlated.

I derive the probability distribution of the equilibrium aggregate action and show

that it decays as a power function with exponential truncation. The speed of the

exponential truncation is determined by the strength of the strategic complementarity

among traders. This analytical result is obtained by a new method that utilizes a

fictitious stochastic tatonnement process to characterize the aggregate actions. The

power-law distribution implies a large kurtosis. Thus, the power-law result illustrates

that a significant magnitude of aggregate risk exists even when the uncertainty in the

transaction volume solely stems from the idiosyncratic private information drawn by a

large number of traders.

I extend the model dynamically in which the traders receive private information

repeatedly. Suppose that the initial belief started far below the threshold belief. Then,

traders buy only if they receive extremely good news. As private information is accu-

mulated over time, however, the average belief increases toward a threshold at which

some traders start buying regardless of the other traders’ inactions. Such traders’ buy-

ing actions trigger the other traders’ buying, which results in a herd that follows a

power-law distribution. This process implies that a large amount of private informa-

tion tends to be revealed at once around the point of time when the average belief

reaches some threshold. Thus, even though the subjective belief converges to the true

value of an asset in the long run, the price process toward the true value can deviate

significantly from the smooth path that would occur if the private information is fully
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revealed in each period. A sizable portion of the total price adjustment toward the

true value is accounted for by the rare events of synchronized actions of a large number

of traders.

The model can account for the non-normal, fat-tailed distribution of daily stock

returns. The private information partially revealed by informed traders in the equilib-

rium transaction is reflected in the resulting shift in the price. I define the difference

in the logarithm of price as the stock return. The impact of the transaction volume on

the return is determined by the supply function of uninformed traders (or “liquidity

suppliers”), which is calibrated as in Gabaix, Gopikrishnan, Plerou, and Stanley [15].

Each realization of the private information profile results in an equilibrium return,

and thus, the returns distribution is obtained by Monte Carlo simulations of informa-

tion draws. The simulated distribution is shown to resemble well the daily returns

distribution observed in the Tokyo Stock Exchange.

As a herding model, our model is analogous to the Keynes’ beauty contest. Each

trader recognizes that the other traders have private information that is as valuable

as her own. When each trader tries to match with the behavior of an average trader,

the resulting equilibrium exhibits fragility due to perfect strategic complementarity. In

addition, if the trader’s action is discrete, the equilibrium becomes locally unique and

allows quantitative characterization of the fluctuations due to the randomness in private

information. This paper formalizes the idea of perfect strategic complementarity among

the traders with private information, and shows that a power-law distribution of the

aggregate actions emerges naturally in this setup.

An extensive array of literature addresses the issue of imitative behavior in financial

markets. The models of herd behavior and informational cascade by Scharfstein and

Stein [32], Banerjee [4], and Bikhchandani, Hirshleifer, and Welch [5] have been applied
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to financial market crashes by Lee [24] and Chari and Kehoe [10] among others. While

the benchmark herd behavior model provides a robust intuition for rational herding, it

typically exhibits an all-or-nothing herding due to its particular information structure

implied by sequential trading. Some modification is due in order to apply the intuition

of herd behavior to stochastic fluctuations. Gul and Lundholm [16], for example, have

demonstrated an emergence of stochastic herding by endogenizing the traders’ choice

of waiting time. I extend this line of research by employing a simple simultaneous-

move model of traders. This approach is related to Caplin and Leahy [9] who argue

that the aggregate revelation of dispersed information in the market tends to occur

suddenly as the last straw that breaks the camel’s back. Stretching their analogy,

this paper claims that, when the camel’s back breaks, the rupture size is distributed

according to a power law. Another underlying theme of this paper is the aggregation of

private information (Vives [37]) or idiosyncratic shocks (Jovanovic [21]; Durlauf [13]).

This paper shows that the aggregation of private information in the market leads to a

non-trivial, structured fluctuation that is characterized by a power law.

The technical analysis I employ is linked to the field of critical phenomena in sta-

tistical physics. Recently, a number of statistical physicists investigated the empirical

fluctuations of financial markets.1 Some papers in this literature reproduce the empiri-

cal power laws by introducing the methodology used for critical phenomena to the herd

behavior models (Bak, Paczuski, and Shubik [2]; Cont and Bouchaud [11]; Stauffer and

Sornette [36]). Two questions have been raised for the models of critical phenomena.

One is that they lack the model of traders’ purposeful behavior and rational learning,

which hinders the integration of their methodology to the existing body of financial

1A survey of these attempts is provided in Bouchaud and Potters [7] and Mantegna and Stanley

[28].
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economics. The other is a fundamental question as to why at all the market has to ex-

hibit criticality. The power-law fluctuation occurs typically only at the critical value of

a parameter that governs the connectivity of the networked traders. Gabaix et al. [15]

address these questions by incorporating the trader’s optimal behavior and by relating

the power laws for the volumes and returns to Zipf’s law for the size distribution of

firms. This paper proposes an alternative by showing that the market necessarily con-

verges to the critical point as a result of the purposeful behavior of individual traders

who gain information from each other.

The remainder of the paper is organized as follows. In Section 2, a simple static

model is presented. Section 3 analytically derives the power-law distribution and pro-

vides an intuition for the mechanism behind the fat tail. The model is also extended

dynamically, and the power-law distribution is shown to occur at the state in which the

heterogeneous beliefs of traders evolve. Section 4 shows by numerical simulations that

the equilibrium volumes follow a power law and that the equilibrium returns distribu-

tion matches its empirical counterpart. Section 5 discusses the role of discrete actions

and symmetric information structure in the model. Section 6 concludes.

2 Model

2.1 Model and equilibrium

In this section, I consider the simplest case in which each trader receives private infor-

mation just once. I consider a financial market with N informed traders, where N is a

large finite number. The informed traders do not know the true state of the economy,

but each of them receives private information xi that correlates with the state. The

signal is private, meaning that trader i does not observe the information received by
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the other traders. The economy can take one of two possible states, H and L. The

asset is worth 1 in state H and 0 in state L. The private information xi is drawn

independently across i from a known distribution F in state H and from G in state L.

A share of the asset is assumed to be indivisible, and the unit of transaction is

normalized by the number of traders, 1/N . Traders choose either to buy it or not.

The situation where traders choose to sell or not can be symmetrically analyzed. The

buying action of trader i is denoted by ai = 1 and the non-buying action is denoted

by ai = 0. The informed trader’s choice is conditional on the price of asset, p. The

demand function of the informed traders is denoted by ai = d(p, xi). The aggregate

demand function is defined as D(p) =
∑N

i=1 d(p, xi)/N .

In addition to the informed traders, there are uninformed traders who act as liq-

uidity suppliers of the asset. I assume that the uninformed traders have an aggregate

supply function S(p), which is upward sloping and satisfies S(p0) = 0. Thus, unin-

formed traders are contrarians who sell when the price is high and buy when the price

is low. The equilibrium price is determined so that it clears the market: D(p) = S(p).

I define a sequence of price points pk, k = 1, 2, . . . , N , at which price the demand from

k informed traders is met by suppliers: S(pk) = k/N .

The transaction is implemented by an auctioneer. The auctioneer receives the

demand and supply schedules D and S from the informed and uninformed traders,

and clears the market by setting price pm so that D(pm) = S(pm).2 Given pm, the

posterior belief of informed trader i for state H to occur is denoted by bi,1. Informed

2This implementation of a rational expectations equilibrium by the submission of demand schedules

follows Bru and Vives [8]. Without the information aggregation by the auctioneer, the model becomes

similar to that of Minehart and Scotchmer [30], who showed that the traders cannot agree to disagree

in a rational expectations equilibrium, i.e., the equilibrium may not exist, or if it exists, it is a herding

equilibrium where all the traders choose the same action.
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traders are risk-neutral and maximize their subjective expected payoff. The expected

payoff of a trader is 0 when ai = 0 regardless of the belief, whereas it is equal to bi,1−p1

when ai = 1. Thus, trader i buys the asset if and only if bi,1 ≥ p.

For each realization of x, a rational expectations equilibrium consists of price pm,

allocation a, demand schedule d, and posterior belief b1, such that (i) for any p, d(p, xi)

maximizes trader i’s expected payoff evaluated at the posterior belief bi,1 for any i, (ii)

bi,1 is consistent with the realized private information xi and pm for any i, and (iii) the

auctioneer clears the market as S(pm) =
∑N

i=1 ai, and delivers the orders ai = d(pm, xi).

2.2 Information structure and optimal strategy

I impose a standard assumption that private information has the monotone likelihood

ratio property (MLRP). I define an odds function δ(xi) = g(xi)/f(xi), where f and g

are derivatives of F and G, respectively. MLRP requires δ to be monotone. Without

loss of generality, I assume that δ is strictly decreasing. Namely, a larger xi implies a

larger likelihood of H. I also assume that the prior belief for H to occur is common

across i at b0. This assumption is imposed for the sake of simplicity, and is relaxed in

Section 3.2, where the belief is allowed to evolve heterogeneously over periods.

Using a likelihood ratio θi,1 ≡ (1 − bi,1)/bi,1, the optimality condition for a buying

action bi,1 ≥ p is equivalently expressed as θi,1 ≤ 1/p − 1. Thanks to MLRP, the

optimal demand schedule of trader j follows a threshold rule:

aj =

 1 if xj ≥ x̄(m),

0 otherwise,
(1)

where x̄(m) denotes the value of private information at which trader j is indifferent

between buying and not buying given pm.
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Under the threshold rule, the likelihood ratios revealed by an inaction (aj = 0) and

by a buying action (aj = 1) are derived as follows, respectively:

A(x̄) ≡ Pr(xi < x̄ | L)

Pr(xi < x̄ | H)
=
G(x̄)

F (x̄)
, (2)

B(x̄) ≡ Pr(xj ≥ x̄ | L)

Pr(xj ≥ x̄ | H)
=

1−G(x̄)

1− F (x̄)
. (3)

As in Smith and Sørensen [34], MLRP implies that, for any value of x̄ in the interior

of the support of F and G,

A(x̄) > δ(x̄) > B(x̄) > 0, (4)

and that A(x̄) and B(x̄) are strictly decreasing in x̄:

dA

dx̄
=

g(x̄)

F (x̄)
− G(x̄)f(x̄)

F (x̄)2
=
f(x̄)

F (x̄)
(δ(x̄)− A(x̄)) < 0, (5)

dB

dx̄
= − g(x̄)

1− F (x̄)
+

(1−G(x̄))f(x̄)

(1− F (x̄))2
=

f(x̄)

1− F (x̄)
(B(x̄)− δ(x̄)) < 0. (6)

A buying trader infers from the equilibrium price pm that there are m− 1 informed

traders buying and N −m not buying. For a non-buying trader, the expected payoff

is zero regardless of the trader’s posterior belief. The posterior likelihood for a buying

trader can be determined using the threshold rule above. Consider a buying trader

at price p1. If this bid is struck by the auctioneer, it implies that the other N − 1

informed traders do not bid at p1. Thus, their actions (inactions) reveal the likelihood

A(x̄(1))N−1. The posterior likelihood in this case is θi,1 = A(x̄(1))N−1δ(xi)θ0. Thus,

the threshold is determined by

1/p1 − 1 = A(x̄(1))N−1δ(x̄(1))θ0. (7)

Similarly, a trader buying at pk knows that, if the bid is executed, there are k − 1

traders bidding at pk and N − k traders not buying at pk. Then, the threshold x̄(k) is
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obtained by solving

1/pk − 1 = A(x̄(k))N−kB(x̄(k))k−1δ(x̄(k))θ0. (8)

Given the threshold behavior above, I obtain the aggregate demand D(pk) as the

number of informed traders with xi ≥ x̄(k) for k = 1, 2, . . . , N . I set D(p0) = D(p1),

since p0 and p1 convey the same information to an informed trader that there is no

other buying trader, while the purchasing cost p0 is lower than p1. Then, I obtain the

following.

Proposition 1 There exists N̄ such that for any N > N̄ , there exists an equilibrium

outcome m for each realization of x.

By taking the log-difference of (8), I obtain

log
A(x̄(k))

B(x̄(k))
+log

1/pk+1 − 1

1/pk − 1
= (N−k−1) log

A(x̄(k + 1))

A(x̄(k))
+k log

B(x̄(k + 1))

B(x̄(k))
+log

δ(x̄(k + 1))

δ(x̄(k))
.

(9)

Note that inf(logA−logB) is strictly positive and independent of N , while log(1/pk+1−

1) − log(1/pk − 1) is of order 1/N . Hence, the left-hand side is strictly positive for

a sufficiently large N . The right-hand side is strictly positive only if x̄(k + 1) <

x̄(k), since A′ < 0, B′ < 0, and δ′ < 0. Then, x̄(k) is strictly decreasing in k.

Define S = {0, 1, 2, . . . , N} as a set of possible equilibrium outcome m, and define

an aggregate reaction function Γ : S 7→ S for each realization of x = (x1, x2, . . . , xN)

such that Γ(m) = D(pm). Since Γ(m) is the number of traders with xi ≥ x̄(m) for

m = 1, 2, . . . , N , and since Γ(0) = Γ(1), a decreasing x̄ implies that Γ is non-decreasing

in m for any realization of x. Since Γ is a non-decreasing mapping of a finite discrete

set S onto itself, there exists a non-empty closed set of fixed points of Γ by Tarski’s

fixed point theorem. 2
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The threshold strategy (1) allows multiple equilibria for each realization of x. Here,

I focus on the case where the auctioneer selects the minimum number of buying traders,

m∗, among possible equilibria for each x. The equilibrium selection maps each real-

ization of x to m∗. Thus, m∗ is a random variable if viewed unconditionally on x,

and its probability distribution is determined by the probability measure of x and the

equilibrium selection mapping. By this selection assumption, I exclude the fluctuations

that arise purely from informational coordination such as in sunspot equilibria. Thus,

under this selection, I can show that even the minimum shift in price log pm∗ − log p0

exhibits large fluctuations. I further characterize the probability distribution of m∗

and pm∗ in the following sections.

3 Analytical results

3.1 Derivation of the power law

In this section, I analytically derive the power-law distribution of the minimum aggre-

gate actionm∗ defined in the model. I propose a method to characterize the distribution

of m∗ by using a fictitious tatonnement process. In so doing, I clarify the condition for

the power law of m∗ and provide an economic interpretation for the mechanism that

generates the power law. I assume that the true state of the economy is H throughout

the paper. The case of L can be analyzed similarly.

The minimum equilibrium m∗ is known to be reached by the best response dynamics

of traders, which Vives [39] called an informational tatonnement. The best response

dynamics requires the traders to know only the “aggregate” information, m in this

case. Cooper [12] argued that the parsimonious informational requirement of the best

response dynamics makes it a desirable equilibrium selection algorithm when there
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exist multiple equilibria and when it is difficult for traders to coordinate their actions.

I start by showing that the informational tatonnement converges to m∗. I continue

to use the notation developed for Proposition 1: I use S for the set of m and Γ for the

aggregate reaction function on m.

Proposition 2 Consider an informational tatonnement process mu, where m0 = 0

and mu = Γ(mu−1) for u = 1, 2, . . . , T , where the stopping time T is the smallest u

such that mu−mu−1 = 0. Then, mu converges to the minimum equilibrium m∗ for each

realization of x. Moreover, the threshold decreases over the informational tatonnement

process: x̄(mu+1) < x̄(mu) for any realization of x.

Proof: Applying Vives [38], it is directly shown that this tatonnement always reaches

a fixed point mT of Γ, since Γ is increasing, S is finite, and m0 = 0 is the minimum

in S. Further, mT must coincide with the minimum fixed point m∗ for the following

reason. Suppose that there exists another fixed point m that is strictly smaller than

mT . Then I can pick u < T such that mu < m < mu+1. Applying the non-decreasing

function Γ, I obtain Γ(mu) ≤ Γ(m). Then, mu+1 ≤ m. This contradicts m < mu+1. 2

Since the informational tatonnement starts from m0 = 0 and converges to m∗, I

can express m∗ as the sum of increments in the tatonnement process. Moreover, the

informational tatonnement can be regarded as a stochastic process, once it is viewed

unconditionally on the private information x. Thus, m∗ can be expressed as the sum of

a stochastic process that starts from and converges to zero. I use this tatonnement as

an algorithm to compute the minimum aggregate action m∗. The idea of characterizing

an equilibrium outcome by a stochastic process is similar in spirit to Kirman [23].

By showing that the threshold x̄ decreases over the stochastic process, Proposition

2 establishes that there exists a non-trivial chance of a chain reaction during the taton-

nement. A trader who chooses to buy in u will continue to choose to buy in u + 1,
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since the threshold is lowered. A trader who does not buy in u might choose to buy

in u + 1. The conditional probability of a non-buying trader switching to buying in

response to mu −mu−1 is defined as follows:

qu ≡
∫ x̄u−1

x̄u

f(x)dx/F (x̄u−1), u = 1, 2, . . . , N, (10)

where x̄u is a shorthand for x̄(mu). qu is always non-negative because of the decreasing

threshold. Thus, mu+1−mu, the number of traders who buy in u+ 1 for the first time,

conditional on the tatonnement history up to u, follows a binomial distribution with

population parameter N −mu and probability parameter qu. The distribution of m1

follows a binomial distribution with population N and probability q0 ≡ 1−F (x̄0). This

completely defines the stochastic tatonnement process, as summarized in the following

proposition.

Proposition 3 Consider a stochastic process mu−mu−1, u = 1, 2, . . . , T , where m0 =

0. Suppose that mu+1 −mu conditional on mu −mu−1 follows a binomial distribution

with population N − mu and probability qu, which is determined by (10) and x̄u =

x̄(mu/N). Further, suppose that m1 follows a binomial distribution with population

N and probability q0. Then, the minimum equilibrium number of buying traders m∗

follows the same distribution as mT , the cumulative sum of the process.

Proposition 3 establishes that the minimum equilibrium m∗ is equal to the sum of

a binomial process. A binomial distribution permits Poisson approximation when the

population is “large” and the probability is “small.” The approximation holds in our

tatonnement if the probability qu is of order 1/N . I show that this is the case.

Proposition 4 As N →∞, the binomial process mu+1 −mu asymptotically follows a

branching process with a state-dependent Poisson random variable with mean

φu =
A(x̄u−1)

δ(x̄u−1)

logA(x̄u−1)− logB(x̄u−1)

A(x̄u−1)/B(x̄u−1)− 1
. (11)
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Moreover, φu → 1 when supx(G(x)− F (x))→ 0.

Proof: Equation (9) implies that x̄(k)− x̄(k+ 1) is of order 1/N . From Equation (10),

I obtain that qu = (f(x̄u−1)/F (x̄u−1))(x̄(mu−1) − x̄(mu)) + O(1/N2). Thus, qu is also

of order 1/N . The asymptotic mean of the binomial variable mu+1 −mu conditional

on mu −mu−1 = 1 is derived as follows:

φu ≡ plim
N→∞

qu|mu−mu−1=1(N −mu)

= plim
N→∞

f(x̄u−1)

F (x̄u−1)

logA(x̄u−1)− logB(x̄u−1)
N−mu−1−1

N
A′(x̄u−1)
A(x̄u−1)

+ mu−1

N
B′(x̄u−1)
B(x̄u−1)

−(N −mu)

N
(12)

= plim
N→∞

logA(x̄u−1)− logB(x̄u−1)
N−mu−1

N

(
1− δ(x̄u−1)

A(x̄u−1)

)
+ mu−1

N
F (x̄u−1)

1−F (x̄u−1)

(
δ(x̄u−1)
B(x̄u−1)

− 1
)N −mu

N
, (13)

where I used (9) and the fact that the difference of log pk is of order 1/N for the

second equation and (5) and (6) for the third equation. Note that mu/N converges to

1 − F (x̄u−1) with probability 1 for a fixed threshold x̄u−1 as N → ∞ by the strong

law of large numbers. Then, (mu/(N − mu))(F (x̄u−1)/(1 − F (x̄u−1))) converges to

1 with probability 1. Applying this to (13), I obtain the expression (11). Using

that x̄(mu) − x̄(mu−1) is of order 1/N , I obtain that qu(N −mu) → φu(mu −mu−1)

for N → ∞. Hence, mu+1 − mu asymptotically follows a Poisson distribution with

mean φu(mu − mu−1), which is equivalently a (mu − mu−1)-times convolution of a

Poisson distribution with mean φu. Thus, the binomial process asymptotically follows

a branching process in which each parent bears a random number of children that

follows a Poisson distribution with mean φu.

When the distribution G is taken closer to F , A(x̄)/B(x̄) → 1 holds since A/B =

(1/F −1)/(1/G−1). As I take A(x̄)/B(x̄)→ 1, the first fraction in the right-hand side

of (11) converges to 1 because of A > δ > B, and the second fraction also converges

to 1 by l’Hospital’s rule. Thus, φu → 1. 2
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A branching process is a stochastic integer process of population in which each

individual (“parent”) in a generation bears a random number of “children” in the next

generation. Proposition 4 shows that the number of newly buying traders in each step

u + 1 asymptotically follows a Poisson distribution with mean φu(mu −mu−1). Since

mu is an integer and since Poisson distribution is infinitely divisible, the tatonnement

process asymptotically follows the branching process in which each newly buying trader

in u induces a random number of other traders to buy in u+ 1 according to a Poisson

distribution with mean φu.

Proposition 4 shows that φu does not depend on N for a given level of threshold

x̄. This means that qu, the probability of a non-buying trader switching to buying in

u, is of order 1/N . This also implies that the decrease in the threshold x̄ in each step

is of order 1/N . This property is important for the tatonnement process to generate a

non-degenerate distribution of the total number of buying traders m∗. If qu is of order

less than 1/N , then m∗ converges to zero as N → ∞. If qu is of order greater than

1/N , the process explodes to infinity with probability one as N → ∞. Only when qu

is of order 1/N , m∗ exhibits non-degenerate stochastic fluctuations.

Now, I derive the distribution of m∗ as the cumulative sum of the informational

tatonnement. Proposition 4 shows that the tatonnement can be approximated by a

branching process with state-dependent Poisson mean, and that the Poisson mean is

close to 1 when the informativeness of the private information is vanishingly small.

When the Poisson mean is constant, I obtain the following distribution for the total

size of the branching process.

Proposition 5 Consider a branching process mu−mu−1 in which m0 = 0, m1 follows

a Poisson distribution with mean µ, and mu+1 − mu conditional on mu − mu−1 = 1

follows a Poisson distribution with mean φ. Then, the sum of the branching process
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mT has the following distribution:

Pr(mT = m) =
µe−(φm+µ)

m!
(φm+ µ)m−1 (14)

∝ e−(φ−1−log φ)mm−1.5, (15)

where the second line holds asymptotically as m→∞.

Proof: The sum mT conditional on m1 = 1 follows a closed form distribution known

as Borel-Tanner distribution in the queuing theory [22]. Equation (14) is derived by

mixing the Borel-Tanner distribution and the Poisson distribution for m1, and (15) is

obtained by applying Stirling’s formula [31]. 2

Proposition 5 states that the sum of the Poisson branching process follows a power-

law distribution with exponent 0.5 with exponential truncation (the exponent is defined

for a cumulative distribution). Since our informational tatonnement does not gener-

ally have a constant branching mean during the process for a finite N , Proposition

5 applies to m∗ asymptotically only when N → ∞ and sup(G − F ) → 0. I provide

an explanation on the analytical property of this asymptotic case, while the deviation

from this asymptotic result for a finite economy is examined by numerical simulations

in Section 4.

The tail distribution as in (15) is known to be obtained not only for the Poisson

branching process but also for any branching process (see Harris [17] and Sornette

[35] for the robustness of this result for generalized branching processes). For the

case φ > 1, there is a non-zero probability for m∗ to be infinite. This is because the

branching process mu+1 −mu does not reach 0 with a non-zero probability if φ > 1,

whereas it reaches 0 in a finite step with probability one if φ ≤ 1.

The exponential tail holds for a large finite m∗ either for the subcritical case φ < 1

or the supercritical case φ > 1 (Harris [17]). The speed of exponential truncation
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is determined by |φ − 1 − log φ|. The speed of the exponential decay slows down as

φ becomes close to 1, and disappears when φ = 1. At this critical level φ = 1, the

branching process becomes a martingale, and the distribution (14) has a power-law tail.

The power exponent (in the cumulative form) is 0.5, which is less than one, implying

that the mean of m∗ diverges to infinity if φ = 1. The exponent 0.5 is closely related

to the same exponent that appears for the distribution of the first return time of a

martingale. The diverging mean can also be shown as follows. The branching process

has a recursive characteristic, in which the total number of offsprings originating from a

child has the same probability distribution as the total number of offsprings originating

from the parent of the child. Let H(s) denote the probability generating function of the

total number of offsprings generated by one parent, and let J(s) denote the probability

generating function of the number of children each parent bears. Then, the relation

H(s) = sJ(H(s)) must hold, where J(H(s)) is the probability generating function for

the offsprings originating from all children of the parent, and s is multiplied to J(H(s))

because H(s) counts the parent in itself. By taking a derivative and evaluating it at

s = 1, I obtain H ′(1) = 1+J ′(1)H ′(1), where J ′(1) = 1 if the mean number of children

per parent is one. Hence, H ′(1) does not have a finite solution if J ′(1) = 1, implying

that the total population does not have a finite mean.

What is the economic intuition for such a large fluctuation of the minimum aggre-

gate actions m∗? The key to the fluctuation is that each informed trader responds to

the average behavior of the other informed traders. This can be seen from the thresh-

old condition (8) for a fixed fraction of buying traders α = m/N at the limit of N :

(1 − α) logA(x̄) + α logB(x̄) = 0. When a trader buys, the other traders adjust their

beliefs not only due to the observed action but also due to the observed inactions of the

other traders. The buying action decreases the likelihood ratio of the other traders by
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a factor of B/A, and thus, decreases their threshold x̄. The inactions of these traders

under the revised threshold partially reveal their private information in turn in favor of

not buying. As a result of these two forces, the threshold is shifted so that the impact

on the public information caused by the triggering buying action is canceled out by

the disbelief subsequently revealed by the inaction of bear traders. Since there are N

traders in the market, the impact of one buying action on the threshold is of order 1/N .

This implies that the probability of a trader induced to buy by the lowered threshold is

of order 1/N . Since there are N−m traders who can be induced to buy potentially, the

branching mean of the newly buying traders φ becomes of order N0. This is a natural

order of magnitude for φ in the case of the symmetric information structure as I assume

here, because the traders have no reason to imagine that the information revealed by

an action should weigh more or less than that revealed by an inaction. Hence, it is

a robust feature of herd behavior models that the chain-reaction mechanism operates

near the criticality when the size of traders in terms of informational weights is not

extremely diversified.

3.2 Dynamic extension

The results in the static model were derived under the assumption of homogeneous

prior belief. The results hold even if the prior belief is heterogeneous. A particularly

interesting case is when the belief evolves over time as private information is drawn

repeatedly. In this case, even though I maintain the assumption that the prior belief

in the initial period is homogeneous, the belief in the subsequent periods will be het-

erogeneous due to the past private information. In this sequence of static equilibria, I

show that the informational tatonnement continues to be characterized as before.

The dynamic extension not only relaxes the assumption of common prior belief but
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also ensures that the propagation effect shown in the static model is triggered at some

point of time. The limiting behavior of q0 when N → ∞ is ambiguous in the static

model. This leaves a possibility that the chain reaction is practically never triggered

for a large N if q0N → 0. This is because the traders will rarely react to the private

information at the beginning of the tatonnement where no other traders reveal their

information, if the prior belief is very low.

It turns out in the dynamic model that the traders eventually learn the true state

as they accumulate private information. This implies that regardless of the level of

the initial prior belief or N , the belief increases to the level at which traders start

buying even though the other traders are not buying. This triggers the propagation of

buying actions. This dynamics is similar to the self-organized criticality of Bak et al.

[3] with respect to the traders’ average belief converging to the state at which the size

distribution of herd behavior is characterized by a power law.

3.2.1 Heterogeneous belief

I dynamically extend the basic model as follows. Each trader i draws private informa-

tion xi,t repeatedly over periods for t = 1, 2, . . .. The private information is identically

and independently distributed across traders and periods. I consider the same asset as

before that is worth 1 in H and 0 in L. Traders are given an opportunity to buy this

asset regardless of their past actions. Noise traders provide the supply function that

has the same elasticity as in the static model but a different intercept S(pt−1) = 0.

The intercept pt−1 reflects the equilibrium price in the previous period, as it incorpo-

rates the information revealed to the public in that period. Informed traders submit

their demand schedule to an auctioneer who clears the market as in the static model.

To maximize the expected payoff of the transaction in t, trader i buys the asset in t
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if bi,t ≥ pt and does not buy otherwise. There is no dynamic aspect involved in the

traders’ decision other than updating the belief.

Informed traders observe their private information history xti = (xi,1, xi,2, . . . , xi,t).

I study a sequence of static equilibria (pt, at, bt), t = 1, 2, . . ., such that the action ai,t

maximizes trader i’s expected period payoff under the subjective belief bi,t (defined for

the state H as before), which is consistent with the trader’s observation.

The prior belief at the initial period is common, bi,0 = b0, but the belief is allowed

to evolve stochastically as the traders draw information repeatedly. Thus, the belief in

each period t > 0 is heterogeneous across traders with a particular structure wherein

the heterogeneity stems only from the distribution functions F and G that are ordered

by MLRP.

Given an action profile history at−1, all traders are divided into 2t−1 groups ac-

cording to their action history at−1
i . Let nk,t denote the number of traders in the k-th

group for k = 1, 2, . . . , 2t−1 (hence,
∑2t−1

k=1 nk,t = N), and mk,t denote the number of

buying traders in the same group. Let Xk,s for s < t denote the domain of xi,s that

is consistent with asi under the threshold strategy supposed in Proposition 6 for trader

i who belongs to group k. The likelihood ratios revealed by an action history of a

non-buying trader i and a buying trader j in group k are written as follows:

Ak,t =

∫
Xk,1
· · ·
∫
Xk,t−1

G(x̄t(Pk,t, x
t−1
i ))dG(xi,t−1) · · · dG(xi,1)∫

Xk,1
· · ·
∫
Xk,t−1

F (x̄t(Pk,t, x
t−1
i ))dF (xi,t−1) · · · dF (xi,1)

, (16)

Bk,t =

∫
Xk,1
· · ·
∫
Xk,t−1

(1−G(x̄t(Pk,t, x
t−1
j )))dG(xj,t−1) · · · dG(xj,1)∫

Xk,1
· · ·
∫
Xk,t−1

(1− F (x̄t(Pk,t, x
t−1
j )))dF (xj,t−1) · · · dF (xj,1)

. (17)

In the static model, informed traders submit the demand schedule conditional on

pm, where the conditioning on pm is equivalent to conditioning on m. In the dynami-

cally extended model, I assume that informed traders submit their demand schedules
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conditional on the vector of the number of buying traders in each group, (mk,t)k. Let

Pk,t denote the information inferred by trader i in group k. Pk,t is written as

Pk,t =

(∏
h

A
nh,t−mh,t

h,t B
mh,t

h,t

)
/Bk,t. (18)

I show that the equilibrium threshold strategy still exists in this setup.

Proposition 6 For each realization of xt, there exists an equilibrium outcome (mk,t)

and thresholds x̄t such that the action profile at satisfies the optimal threshold rule:

ai,t =

 1 if xi,t ≥ x̄t(Pk,t, x
t−1
i ),

0 otherwise.
(19)

The proof is deferred to Appendix A. The tatonnement process is characterized by a

mixture of binomial distributions, which asymptotically follows a Poisson distribution.

The threshold decreases over steps during the tatonnement within each node of history,

and hence, we have a well-defined tatonnement process where a chain reaction of buying

actions is possible.

3.2.2 Self-organized criticality

In this dynamic extension, traders accumulate private information that is independent

across periods. Thus, through Bayesian learning by observing private information and

aggregate actions, traders eventually learn the true state almost surely.

Proposition 7 The subjective belief bi,t converges to 1 as t→∞ almost surely.

Proof: The likelihood ratio for the private information history,
∏t

τ=1 δ(xi,τ ), converges

to zero as in Billingsley [6]. The proof is outlined as follows. The likelihood ratio

θi,t follows a martingale in the probability measure of the private information under
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the true state: E(θi,t | θi,t−1, H) = θi,t−1. Further, the likelihood ratio is bounded

from below at zero by construction. Then, the martingale convergence theorem asserts

that the likelihood ratio converges in distribution to a random variable. Moreover, the

probability measures represented by the distributions F T and GT for a sequence of

private information (xi,1, xi,2, . . . , xi,T ) are mutually singular when T → ∞, since xi,t

is independent across t. Then,
∏t

τ=1 δi,τ converges to zero.

Hence, θi,t converges to zero if Pk,t remains finite for t → ∞. Pk,t is finite for a

finite x̄t when N is finite. When x̄t tends to a positive infinity, Pk,t decreases to a finite

value since Ak,t and Bk,t are decreasing in x̄t and positive. When x̄t tends to a negative

infinity, all traders eventually choose to buy. Hence,
∏

hA
nh,t−mh,t

h,t tends to one, and

Pk,t tends to
∏

hB
mh,t

h,t /Bk,t. I showed that Bk,t < (1/pt − 1)/(θ0Pk,t) in the proof of

Proposition 6. If Pk,t tends to a positive infinity as x̄t tends to a negative infinity, then,

this inequality contradicts the fact that Pk,t tends to ΠhB
mh,t

h,t /Bk,t for any finite N .

Thus, Pk,t is finite as t→∞. Hence, θi,t is dominated by private information as t→∞

and converges to zero, and bi,t converges to 1 almost surely. 2

Proposition 7 means that the belief converges to the true state eventually. This is

a natural consequence of the fact that traders have infinitely precise information in the

long run as they accumulate their own private information repeatedly. The convergence

of belief implies that there is no possibility for herd behavior in the long run in the

narrow sense that we have an infinite sequence of traders taking actions on the basis

of a wrong belief or of traders completely neglecting their private information.

The convergence of belief to the true state H means that all traders will buy even-

tually. This implies that some traders start buying even without any other trader

buying at some point of the process toward convergence. Such a buying action triggers

the chain reaction of buying. Thus, the converging belief assures that the triggering
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actions eventually occur and almost surely cause the fat-tailed aggregate actions. The

logic is analogous to the self-organized criticality proposed by Bak et al. [3]. In Bak’s

sand-pile model, the distribution of avalanche size depends on a slowly-varying variable

(the slope of the sand pile), and the dynamics of the slope variable has a global sink ex-

actly at the critical point at which the avalanche size exhibits a power-law distribution.

In our model, the average belief corresponds to the slope in the sand-pile model. The

chain reaction is rarely triggered when the average belief is far below the threshold.

As private information accumulates, the average belief increases toward the threshold.

This ensures that the triggering buying action will occur eventually.

4 Numerical results on volumes and returns distri-

butions

In Section 3.1, I derived the power-law distribution analytically without specifying F

and G, but only asymptotically when N is taken to infinity and F is taken to G. In

this section, I show by numerical simulations that the probability distribution of the

minimum equilibrium aggregate action m∗ follows a dampened power law when N is

finite for a parametrized distribution of private information. In the simulations, I set

the number of informed traders N as finite but relatively large: 500 and 1000. F

and G are specified as normal distributions with mean 1 and 0, respectively, and with

standard deviation σ that is relatively large: 25 and 50. The large standard deviation

relative to the difference in mean captures the situation where the information value of

the news is small. The common prior belief is set at b0 = 0.5, reflecting the situation

where traders put equal probabilities on the two states, and the initial price level fully

reflects the belief as p0 = 0.5.
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It is extensively discussed in the literature as to how informed traders’ trades are

incorporated in prices. For example, the no-trade theorem by Milgrom and Stokey [29]

argued that no stable relation between the price and trades is necessarily predicted if

the price reflects the publicly available information instantly. Smith [33] showed that

a trader’s timing of trade will not be affected by public information either, since the

price movement that reflects the public information will cancel out the effect of the

public information on the trader’s belief. Considering this difficulty, Avery and Zemsky

[1] proposed that another dimension of uncertainty is needed for herd behavior models

to deal with stock price fluctuations. In this paper, I follow Gabaix et al. [15] who

provide a micro-foundation for the square-root specification of a price impact function

with a Barra model of uninformed traders that have a mean-variance preference and

zero bargaining power against informed traders. Namely, I specify the supply schedule

by uninformed traders as S(p) = p0((m − 1)/N)γ with γ = 0.5. This square-root

specification falls within the empirically estimated range of the price impact (Lillo et

al. [25]) and is used in the estimation of the price impact function (Hasbrouck and

Seppi [18]).

A profile of private information x is randomly drawn 100,000 times, and m∗ is

computed for each draw. Figure 1 plots the inverted cumulative distribution of m∗

for different values of σ and N . The inverted distribution Pr>(m∗) is cumulated from

above, and is thus 0 at m∗ = N and 1 at m∗ = 0. The distribution is plotted in log-log

scale, and thus, a linear line indicates a power law Pr>(m∗) ∝ m∗−ξ, where the slope of

the linear line ξ is called the exponent of the power law. The simulated distributions

appear linear for smaller values of m, and decay fast when m is close to N . This

conforms to the model prediction that m∗ follows a dampened power-law distribution.

The asymptotic analysis also predicted ξ = 0.5. As shown in the left panel of Figure 1,
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Figure 1: Left: Inverted cumulative distributions of the minimum equilibrium number

of buying traders m∗. Right: Distributions of price shifts log pm − log p0

I observe ξ around 0.5 when σ = 25 and N = 1000, but it takes larger values for other

parameter sets. This might result from the fact that exponential truncation occurs at

a small value of m in these cases, or that the state-dependence of φ is strong enough

to cause a large deviation from the predicted exponent ξ.3

Our model also determines price pm for each equilibrium number of buying traders

m. I interpret the shifts in log price caused by the equilibrium transactions, log pm −

log p0, as stock returns, and plot the distributions of the simulated returns in the right

panel of Figure 1. The density is logarithmically scaled, and thus, a linear decline indi-

cates an exponential distribution. Notice that the returns are normalized by standard

deviations, and the normalized returns span a wide range from -10 to 10. Thus, the

plots well indicate that the simulated returns distributions exhibit the pattern of fat

tails with exponential truncation.

3Sornette [35] shows that the power-law exponent increases by 1 when the parameter φ travels

across the criticality.
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Figure 2: Distributions of TOPIX daily returns, simulated returns log pm− log p0, and

a standard normal distribution (Left: semi-log scale, Right: linear scale)

The simulated distribution of returns is compared to the empirical distribution in

Figure 2. The returns distributions are plotted in semi-log scale in the left panel and

in linear scale in the right panel. The daily returns data is generated using the TOPIX

stock index in the Tokyo Stock Exchange during 1998-2010. I define the daily return

as the log difference from the opening price to the closing price, rather than the return

in a business day, in order to homogenize the time horizon of each observed return.

The simulated distribution is generated under the parameter set N = 1000 and

σ = 48.5. The standard deviation of the information, σ, is set so that the density

estimate at returns 0 matches with the empirical distribution, as shown in the right

panel of Figure 2. The other parameters are set as in the previous simulations. I

observe that the tail distribution (especially the left tail) of the empirical returns is

well replicated by the simulated tail in the left panel.

The herding behavior in our model results in the slow decay of the probability

distribution of the fraction of buying traders m/N . This contrasts well to the case
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where traders act independently on their own private information. In this case, their

action ai is independent across i, and thus, the central limit theorem predicts that

m/
√
N asymptotically follows a normal distribution. Simulations also show that the

variance of m∗/N does not decline as N increases. The simulated variances are 8%,

9%, and 11% for the cases of N = 500, 1000, and 2000, respectively. This contrasts

again with the case of no strategic complementarity, where the variance should decline

linearly in N according to the law of large numbers.

A power-law tail implies that the distribution belongs to the domain of the attrac-

tion of a stable law, i.e., the sum of the random variables distributed according to

a power law also follows the power law with the same exponent. Thus, if the herd

size of traders follows a power law independently in each period, the cumulated size of

the herds over periods should also follow a power law with the same exponent. If the

power law is truncated exponentially, the central limit theorem comes into effect in the

accumulation, and thus, the cumulated herd size would converge to a normal distribu-

tion as the time horizon increases. Hence, the distribution of herd size will exhibit a

transition from a fat tail to a normal tail as the time horizon of the return increases.

This is indeed empirically observed in the stock returns (Mantegna and Stanley [28]).

5 Discussions

5.1 Variation in market microstructure

In the benchmark model above, I characterize the distribution of the smallest equilib-

rium m∗ under the assumption that the informed traders do not know this selection

rule when multiple equilibria exist. This implies that the dampened power law char-

acterizes a portion of fluctuations that arise from the local propagation of information
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among traders in the situation where the actual equilibrium fluctuations may also in-

volve global shifts in equilibrium due to the sunspot-like coordination. In this section,

I provide an alternative model in which informed traders know that the auctioneer

selects the smallest m∗. This modification has subtle effects on equilibrium, and there-

fore, I can no longer characterize the dynamic case where the information is drawn

repeatedly. However, the analysis for the static model still holds as shown below.

When traders know the selection rule, they not only know the number of buying

and non-buying traders at pm but also know that there is no equilibrium at a price

below pm. Thus, they infer that there are at least k + 1 traders buying at pk for any

k < m. This is equivalent to the fact that there are two traders with information

greater than x̄(1) and one trader with xi ≥ x̄(k) for each k = 2, 3, . . . ,m − 1. The

threshold condition is modified as

1/p1 − 1 = A(x̄(1))N−1δ(x̄(1))θ0, (20)

1/p2 − 1 = A(x̄(2))N−2B(x̄(1))δ(x̄(2))θ0, (21)

1/pm − 1 = A(x̄(m))N−mB(x̄(1))Πm−2
k=1 B(x̄(k))δ(x̄(m))θ0, m = 3, 4, . . . , N. (22)

I can show that x̄(m) is decreasing in m, and thus, the fictitious tatonnement

follows a stochastic process as earlies. The simulated distributions of aggregate actions

and returns are shown in Figure 3. The distribution of m∗ shows a faster exponential

truncation for the case of N = 1000, compared to the case of the benchmark model.

For N = 500, there is a small 0.2% probability for an explosive equilibrium m∗ = N

in which all the informed traders buy. The distributions of returns are similar to the

benchmark model except for the occurrence of an explosive equilibrium for the case

of N = 500. The difference from the benchmark model arises from an altered φu,

the mean number of buying traders induced by a buying trader in tatonnement step
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Figure 3: Simulated distributions of m∗ (left) and log pm− log p0 (right) when informed

traders know the auctioneer’s selection rule of m∗.

u. When the traders know that there cannot be a smaller equilibrium, they can infer

more precise information from the traders who receive a very high signal xi. Thus, the

threshold x̄(k) decreases in k faster than in the benchmark model. This results in a

different fluctuation pattern in m (the left panel), but the distribution of returns (the

right panel) seems to be less affected.

5.2 Discrete actions

The discreteness of the action space plays an important role in the rational herd be-

havior model. In our model, traders can only choose either to buy or not. Suppose

instead that each trader chooses an action from a continuous action space and that

the action corresponds to the private information one-to-one. Suppose that the pri-

vate information is drawn from an exponential distribution, for example, and that the

state space is the possible mean of the distribution, {λ, µ}, where λ > µ and the true

state is λ. Then, the likelihood ratio of observing an average information profile 〈x〉
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is (λ/µ)Ne(1/λ−1/µ)N〈x〉. Since 〈x〉 → λ and (λ/µ)e(1−λ/µ) < 1, the likelihood ratio

converges to 0 as N increases. Thus, for a large N , one round of information draw is

sufficient for the market to learn the true state. This contrasts with our result that

the amount of information revealed in equilibrium varies greatly depending on the

realization of the information profile x.

The aggregate effect of the binary choice shown in this model has an implication

on the effectiveness of the Tobin tax scheme. The tax levied on the transactions of the

assets held for short term raises the transaction costs, and thus, can suppress specula-

tive trades. A byproduct of the increased transaction costs and the decreased trades

is the inhibition of the revelation of private information. This model suggests that the

inhibition may result in a larger aggregate fluctuation. An increase in transaction costs

will decrease the frequency of transaction and increase the volume per transaction for

each trader. In the situation where the information inferences among traders give rise

to the aggregate fluctuations of volumes and returns, the magnitude of fluctuations

can be suppressed by inducing the traders to trade more frequently. In the limiting

case when the traders trade continuously, the stochastic fluctuations of the herd size

disappear as discussed above in the case of continuous action space. This mechanism

corresponds to the empirical finding by Hau [19] that the volatility of stock prices is

increased by an increase in transaction costs.

The effect of the transaction costs on the aggregate fluctuations can be illustrated

as follows. Suppose that traders need to trade a certain amount of assets in each

year. Suppose that traders can divide the total amount into monthly transactions if

the transaction cost is low, whereas they can afford only one transaction a year if the

transaction cost is high. If traders tend to herd in transactions due to the revelation

of private information associated with the transactions, I observe a small monthly
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herding when the transaction cost is low, whereas I observe a large yearly herding

when the transaction cost is high. If the herd involves all the traders at once, and if

the total volume traded per year is fixed at X, the second moment of daily volume is

12(X/12)2/365 in the case of monthly herdings while it is X2/365 in yearly herdings.

Thus, while the Tobin tax does shift the occurrence of herding from the high frequency

domain to low, it can result in an increase in the daily volatility of trades.

The present model assumes a discrete state space in addition to the binary action.

Even in a continuous state space, however, the structure of the information revelation

will not be altered. This is because traders still form a threshold behavior, and thus, the

revealed private information is lumped into two groups, below or above the threshold.

The essential environment for the threshold rule, which is the necessary ingredient for

the stochastic chain reaction, is that the action space is coarser than the state space

so that the private information is not fully revealed by actions.

The binary state space, or the “either-or” uncertainty, arises typically when two

alternative interpretations emerge among traders for a set of observations on the true

value of assets. Consider the period of a prominent rise in stock prices, for example. It

imposes an either-or uncertainty if the traders are divided into two camps as to whether

the price rise is justifiable by fundamentals or it is a bubble. The type of stochastic

herding shown in our model is plausible in this situation. After a long period of

the accumulation of own private information without much revelation of the private

information to the market, the average belief moves toward the level at which some

traders start to trade on their private information alone even though no other traders

trade. Such traders trigger the other traders to follow, and this herd size obeys the

fat-tailed distribution. Thus, in the convergence process toward the true value of the

asset, a bulk of adjustments is made by the tail instances of the stochastic herd. At the
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tail event, a number of traders become simultaneously convinced by one interpretation

through the process of information revelation in which one trader’s conviction exerts a

positive influence toward the conviction of another.

This paper mainly aims at explaining the fat-tailed fluctuations observed in the

high-frequency domain for which the empirical evidence is most supportive. However,

some empirical studies such as Jansen and de Vries [20] and Longin [26] suggest that

the largest crashes and booms in the history can be understood as an extreme event

within the same power-law tail, instead of being outliers. Authors such as Lee [24]

and Chari and Kehoe [10] pursue to apply the logic of herd behavior to rare large

events such as market crashes. Our model is consistent with their view that market

crashes are caused by the same mechanism that causes price fluctuations in normal

times. Of course, the uncertainty on asset fundamentals varies in terms of its impact

on prices, and the underlying uncertainties for the historic crashes are probably more

potent than the uncertainties that drive daily fluctuations. However, for both crashes

and daily fluctuations, the traders exchange their information through the same market

mechanism. Thus, low-frequency events and high-frequency events may well share the

same mechanism through which the traders’ views crystallize collectively.

5.3 Information structure

In an illuminating paper, Gabaix et al. [15] provide an explanation for the power laws

in stock volumes and returns by focusing on trader heterogeneity. They start from

the observation that trader size follows a power law, and argue that the power law

transmits to the transaction volumes and price movements even if the traders’ actions

are independent. I take a different approach to explain the fat-tailed distributions by

the interactions of traders who receive private information. This paper shows that the
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power-law distribution can emerge even if the traders are symmetric in size.

This paper employs a model of rational herding that provides an economic foun-

dation for the traders’ apparent imitative behaviors. It has been pointed out in the

literature of critical phenomena that the imitative behaviors can lead to fat-tailed fluc-

tuations, if the imitation occurs stochastically around a particular “critical” probability

somehow. This paper provides an economic reason as to why the imitative behavior oc-

curs at the critical probability. The basic property that warrants the imitative traders

model to generate a non-degenerate, non-explosive fluctuation is that the impact of

an average trader’s revealed information is 1/N in terms of the likelihood of another

trader’s action. This property naturally arises when the private information of any

trader is as worthy as another trader’s, and an action by a trader is as informative as

an inaction by another.

It has been suggested that the information structure is a crucial factor that de-

termines the nature of the distribution of the aggregate fluctuations. An important

example is the standard herd behavior model with sequential trading such as Banerjee’s

[4]. In such as case, a trader can only observe the actions of traders who have taken

actions earlier. Then, the first trader exerts overwhelming influence on the subsequent

traders, resulting in complete herding in which all traders take the same action. The

standard herding model is extended to the models of critical phenomena in the market

with networked traders such as Cont and Bouchaud [11] and Stauffer and Sornette

[36]. They explain the power-law distributions of returns with heterogeneous or local-

ized reference groups of traders generated by an exogenous random process. In con-

trast, this paper shows that stochastic herding with a power law distribution emerges

in the symmetric structure of information inference among traders. The model can

be extended to incorporate the heterogeneous information structure that modifies the
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threshold (8). The analytical method to characterize the aggregate fluctuations by the

fictitious tatonnement remains valid, and the resulting distribution will be affected by

the heterogeneity in the traders’ reference groups.

6 Conclusion

This paper analyzed aggregate fluctuations that arise from the information inference

among traders in financial markets. In a class of herd behavior models in which each

trader infers other traders’ private information only by observing their actions, I found

that the number of traders who take the same action at equilibrium can exhibit a large

variation. The size of the synchronized actions follows a power-law distribution with

exponential truncation. The model prediction was fitted to the empirical fat-tail dis-

tribution of stock returns. The parameters that determine the power-law distribution

and its exponential truncation were identified by a new analytical method that utilizes

a fictitious tatonnement process. I also showed that such chain reactions are eventually

triggered almost surely in the situation where private information is drawn repeatedly

over time. This implies that the model features a self-organized criticality: traders’

belief converges to the point at which the fluctuations of the aggregate actions follow

a power law.

The power-law distribution of aggregate actions emerges when the information

structure of traders is symmetric. Every trader receives private information of the

same magnitude of informativeness on the true value of an asset. Thus, an action by

a trader is as informative as an inaction by another. When information is revealed by

a trader’s buying action, the inaction of the other traders reveals their private infor-

mation in favor of not buying. This counter-revelation is facilitated by a change in
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the threshold private information of order 1/N , which leads to the criticality condition

for the aggregate fluctuations. Thus, the information inference model provides an eco-

nomic foundation for the models of critical phenomena in the market with interacting

traders. Finally, the model implies that an increase in transaction costs raises the

lumpiness of discrete actions, and thus, increases aggregate volatility.

Appendix

A Proof of Proposition 6

I define the threshold function x̄t(Pk,t, x
t−1
i ) at which trader i is indifferent between

buying and not buying. It is implicitly determined by

1

pt
− 1 = Pk,tθ0δ(x̄t)

t−1∏
τ=1

δ(xi,τ ). (23)

It follows that δ(x̄t(Pk,t, x
t−1
i ))

∏t−1
τ=1 δ(xi,τ ) is equal to (1/pt − 1)/(θ0Pk,t), and thus, is

constant across i in group k. Then, Ak,t > (1/pt − 1)/(θ0Pk,t) > Bk,t can be shown as

follows. The numerator of Ak,t is expanded as∫
Xk,1

· · ·
∫
Xk,t−1

G(x̄t(Pk,t, x
t−1
i ))δ(xi,t−1)dF (xi,t−1) · · · δ(xi,1)dF (xi,1) (24)

>

∫
Xk,1

· · ·
∫
Xk,t−1

F (x̄t(Pk,t, x
t−1
i ))δ(x̄t(Pk,t, x

t−1
i ))Πt−1

τ=1 (δ(xi,τ )dF (xi,τ )) (25)

=
1/pt − 1

θ0Pk,t

∫
Xk,1

· · ·
∫
Xk,t−1

F (x̄t(Pk,t, x
t−1
i ))dF (xi,t−1) · · · dF (xi,1). (26)

The integral in (26) is equal to the denominator of Ak,t, and thus, Ak,t > (1/pt −

1)/(θ0Pk,t) holds. Similarly, I obtain Bk,t < (1/pt − 1)/(θ0Pk,t).
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Suppose that mt increases due to an increase in mk,t. Pk,t decreases by Ak,t > Bk,t

and (18). Then, x̄t needs to adjust in order to satisfy (23). By using Ak,t > (1/pt −

1)/(θ0Pk,t) > Bk,t, I get that the logarithms of Ak,t and Bk,t are decreasing in x̄t as in the

static model. Further, δ(x̄t) is decreasing in x̄t. Thus, x̄t in (23) decreases in response

to the increase in mt. The decreasing x̄t entails a non-decreasing reaction function

of mt+1 defined for each realization of xt. Hence, the existence of an equilibrium is

established by Tarski’s fixed point theorem. This completes the proof.

The informational tatonnement process is characterized by a set of binomial distri-

butions with probability qk,u and population nk. When mk and x̄u − x̄u+1 are small

and nk is large, the binomial allows a Poisson approximation. Thus, the sum of traders

who buy in step u is approximated by a Poisson with mean
∑

k nkqk,u. Hence, the

tatonnement approximately follows a Poisson branching process.
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